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Abstract
Famously, Adrian Moore has argued that an absolute representation of reality is
possible: that it is possible to represent reality from no particular point of view. More-
over, Moore believes that such absolute representations are a desideratum of physics.
Recently, however, debates in the philosophy of physics have arisen regarding the
apparent impossibility of an absolute representation of certain aspects of nature in
light of our current best theories of physics. Throughout this article, we take gravita-
tional energy as a particular case study of an aspect of nature that seemingly does not
admit of an absolute representation. There is, therefore, a prima facie tension between
Moore’s a priori case on the one hand, and the state-of-play in modern physics on the
other. This article overcomes this tension by demonstrating how, when formulated in
the correct way, modern physics admits of an absolute representation of gravitational
energy after all. In so doing, the article offers a detailed case study of Moore’s argu-
ment for absolute representation, clarifying its structure and bringing it into contact
with the distinction drawn by philosophers of physics between coordinate-freedom
and coordinate-independence, as well as the philosophy of spacetime physics.

Keywords Absolute representations · General relativity · Gravitational energy ·
Pseudotensors · Geometric objects · Fibre bundles

1 Introduction

[I]t is the business of physicists, as it is the business of no other enquirers, to find
some minimal set of concepts that can be used for the indirect endorsement of
any true representation: evidence that the concepts physicists currently employ
are inadequate for these purposes is evidence that they have further work to do.
— Moore (1997, p. 75)
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The search for ‘absolute’ representations of reality has been a staple in the history
of philosophy, and continues to be a central issue in contemporary philosophy of
science.1 Briefly, absolute representations are representations that are not from any
point of view. In physics, absolute representations are often identified as those which
are coordinate-independent or coordinate-free—that is, representations which do not
depend on any specific choice of reference frame or coordinate system.

In his monumental book Points of View (1997), AdrianMoore has given a very gen-
eral argument in favour of the possibility of absolute representation, which states that
because representations have to ‘answer to reality’ there must always exist an account
of what makes a representation true that is not itself from any point of view. Further-
more, Moore, following Quine (1978), believes that it is up to physics to produce such
absolute representations, as the quotation at the start of this article illustrates. But the
very possibility of absolute representations of certain aspects of nature continues to
be a matter of dispute.

One particularly important case that has generated recent discussion is the status of
gravitational stress-energy in general relativity (GR): momentum and energy carried
by the gravitational field itself, rather than by the matter located within spacetime.
On the one hand, there are good prima facie reasons to believe that gravitational
energy exists—for example, to secure a notion of local energy conservation. On the
other hand, there seems to be no ‘geometric object’ on the spacetime manifold that
represents this quantity.2 The best option available is to represent gravitational energy
as a so-called ‘pseudotensor’, but such an object is coordinate-dependent in a vicious
sense to be made precise. If Moore is correct that it is the business of physicists to find
an absolute representation of reality, then this is surely an embarrassment for physics.
Put differently, the absence of an absolute representation of gravitational energy is
evidence that physicists (or indeed philosophers of physics!) “have further work to
do”.

In this articlewe propose away out of the dilemmabyway of a different, coordinate-
independent representation of gravitational energy known as the ‘Sparling form’.
Although this representationwas already proposed by Szabados (1991), it has received
virtually no attention in the philosophical literature on gravitational energy. We argue
that this proposal both offers a new solution to an important puzzle in the philosophy
of physics, and (in turn) affords the resources with which to overcome any perceived
tension here with Moore’s a priori argument for absolute representation. Since mod-
ern physics is rife with other non-geometric objects of substantial importance (most
notably spinors, which we discuss in §8), this article should be taken to constitute just
one case study in a broader investigation into absolute representations and modern
physics—and, therefore, as an invitation to a great deal of “further work”.

The combination of a priori metaphysics and applied philosophy of physics
deployed in this article might strike some readers as recherché. It’s certainly true
that these two debates usually proceed in isolation. But we believe that it is important

1 Much of the contemporary discussion goes back to Bernard Williams (Descartes 1978 and Ethics and
the Limits of Philosophy 1985); see also Thomas Nagel’s The View from Nowhere (1986). The idea of a
metaphysically perspicuous representation of the world is related; on this, see Sider’s Writing the Book of
the World (2011).
2 ‘Geometric object’ is a technical term, which we will define precisely later in the article.

123



European Journal for Philosophy of Science            (2025) 15:15 Page 3 of 26    15 

to bring them in contact with each other. For those with a prior interest in the ques-
tion of absolute representation, the example of gravitational energy is more detailed
but also more realistic than stock examples such as tense. Especially if one concurs
with Moore that it is the business of physics to find absolute representations, someone
interested in their very possibility should surely take in interest in physicist’ struggle
to produce such representations. For those with a prior interest in the interpretation of
GR, the connection to Moore’s work on absolute representation shows clearly what
is at stake. There is a near-consensus that coordinate-dependent representations are
suspicious, but the reasons why that is so are rarely made precise. We contend that
one of those reasons is exactly that a coordinate-dependent representations are not
absolute. If Moore is correct that representations have to answer to reality, then the
impossibility of an absolute representation of gravitational energy would suggest that
gravitational energy does not correspond to any aspect of reality. The abstract topic
of absolute representation thus has a direct impact on the interpretation of spacetime
physics.3

The structure of the article is as follows. In §2, we present a detailed analysis of
Moore’s argument in Points of View. This analysis also highlights a lacuna in the argu-
ment, which leads to a slight weakening of its conclusion. In §3, we connect the notion
of absolute representation to that of coordinate-independence in physics. We explain
that such coordinate-independence is achieved if the mathematical representations
of physical quantities are so-called ‘geometric objects’. Crucially, the gravitational
stress-energy pseudotensor is not a geometric object, as we discuss in §4. This leads
to the central dilemma of this article. In §5, we present our solution to this dilemma,
based on the work of Szabados. This proposal also helps to solve a distinct but related
problemwith the gravitational stress-energy pseudotensor, namely that it is not unique,
as we show in §6. The proposal of this article provides an absolute representation of
gravitational energy, but it has certain counter-intuitive metaphysical implications.
These implications are discussed in §7. §8 concludes.

2 Moore’s Argument

Moore (1997) argues that an absolute representation of reality—that is, a representation
of reality that is from no particular point of view—is invariably possible. Following
Moore, by a ‘representation’ we mean anything which has content and which is true or
false in virtue of the content that it has. Here is a reconstruction of Moore’s argument
for the claim that an absolute representation is always possible:4

1. There exists a set C of possible representations that are integrable by simple
addition such that for any pair of true possible representations r1 and r2, there
exists an R ∈ C part of which reveals how r1 and r2 are made true by reality.

2. For any representation r1 from a point of view p1, there exists another represen-
tation r2 that is from an incompatible point of view p2.

3 Readers who truly abhor discussions of absolute representation but are interested in our account of
gravitational stress-energy can skip to §4; readers who truly abhor philosophy of physics but are interested
in our discussion of Moore can ignore §4 and further.
4 In personal correspondence, Moore has endorsed this reconstruction.
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3. If r1 and r2 are from incompatible points of view p1 and p2, and part of R reveals
how r1 and r2 are made true by reality, then R is neither from p1 nor from p2.

4. Therefore, there exists a set C of representations that are integrable by simple
addition such that no element of C is from any point of view: C is an absolute
representation of reality.

Let us comment on the premises one-by-one. The first premise states that there
exists a set C of true representations, such that these representations are “integrable
by simple addition”. This means that one can ‘add’ them together to form another true
representation. The typical form of simple addition is conjunction: if r1 and r2 are
sentences of propositional logic, for instance, then their simple addition is r1 ∧r2. It is
clear that not all true representations are integrable by simple addition. For example,
if r1 is an utterance of “It is raining” onMonday, and r2 is an utterance of “It is dry” on
Tuesday, then their conjunction “It is raining and it is dry” is not a true representation
whether uttered on Monday or on Tuesday.

The members of C are supposed to “reveal” how pairs of true representations
are “made true by reality”. Consider first the weaker claim that for any pair of true
representations r1 and r2, there is some true representation R that provides an account
of the way in which r1 and r2 are made true by reality—no claim is yet made as to
whether, for different pairs of representations, such accounts are integrable by simple
addition. For Moore, this weaker claim just follows from the fact that r1 and r2 are
made true by reality: “it means nothing to say that each of them is made true by reality
unless it is possible, in principle, to produce a representation that reveals how” (p. 69).

The stronger claim that, for different pairs of true representations, the accounts
that reveal how they are made true by reality are from the same point of view—and
hence integrable by simple addition—follows from the fact that true representations
are made true by “the same reality in every case”. If that is the case, Moore says, then
“not only must it be possible to provide an account of the kind just described for any
possible true representation, but the part of this account that is used for the indirect
endorsement of the representation must be combinable with every other such part into
a single conception of reality—call it C” (p. 69).

So much for the first premise. The second premise is straightforward: if there were
a point of view p such that no representation from an incompatible point of view were
possible, then a representation from p would just amount to a representation from no
point of view.

The third premise, however, is more controversial. Moore defends it as follows.
Firstly, to reveal how r1 and r2 are made true by reality is to (indirectly) integrate
them. Secondly, since r1 and r2 are from incompatible points of view, they are not
integrable by simple addition—that is just what it means for their points of view to be
incompatible. Therefore, in order for a representation R to integrate them somehow,
it has to endorse one of them—say r1—without adopting the associated point of view
p1. But this does not yet establish that R is from neither p1 nor p2. Moore goes on
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to claim that “[R’s] treatment of r1 and r2 will be entirely symmetrical”, but offers no
further justification for this claim.5 As it stands, then, the third premise is unjustified.

Here is an example to illustrate the lacuna. Consider again an utterance of “It
is raining” on Monday and an utterance of “It is dry” on Tuesday. These are from
incompatible points of view, so cannot be integrated by simple addition. Clearly, one
could indirectly integrate them in a tenseless way: “‘It is raining’ is uttered onMonday
and it is raining on Monday, and ‘It is dry’ is uttered on Tuesday and it is raining on
Tuesday.” But is is also possible to indirectly integrate these utterances from, say,
the first one’s point of view. For example, one can say: “‘It is raining’ was uttered
yesterday, and yesterday it was raining; but ‘It is dry’ was uttered today, and today it
is dry.” This latter representation reveals how both utterances are made true by reality,
but it does so from a particular temporal perspective.

It is possible to replace the third premise with a weaker version, namely that if r1
and r2 are from incompatible points of view p1 and p2, and part of R reveals how r1
and r2 are made true by reality, then R is either not from p1 or not from p2—or from
neither. From this premise a weaker conclusion follows:

4′. Therefore, there exists a representation of reality, C , such that all elements of C
are from the same point of view.

Notice that this conclusion remains far from trivial! For it establishes that one can
make sense of reality—all of reality—from one unified point of view. This perspective
need not be privileged; there may exist unified representations of reality from many
different, incompatible points of view. But (4′) suffices to overcome any radical form
of perspectivalism on which true representations from different points of view are
fundamentally irreconcilable.

Moore has briefly responded to this objection in recent work (Moore, forthcoming,
fn. 8). In order to reveal how true representations from incompatible perspectives
are made true by reality, Moore claims, one also has to reveal how their respective
perspectives contribute towards their truth. It may seem as though one could show
this from a particular point of view: on Tuesday, I can make sense of the difference
in perspectives between “It is raining” uttered on Monday and “It is dry” uttered on
Tuesday by appeal to the fact that these utterances were made one day apart. But,
Moore argues, this account of the difference in perspectives itself presumes a certain
perspective. If one were to account for the same difference in perspective on the
preceding Sunday, that account would appeal to the fact that the utterances in question
will be made one day apart. The availability of distinct explanations of the difference
in perspective—that the utterance were made one day apart or that they will be made
one day apart—belies the fact that it is the same difference in perspective in each case.
Therefore, Moore concludes, it is impossible to truly reveal how these representations
are made true by reality from any particular point of view.

We concur with Moore (in conversation) that more needs to be said at this point,
but we will not belabour it further here. In any case, we affirm the claim that in order
to reveal how representations from incompatible perspectives are made true by reality,

5 In personal correspondence, Moore has acknowledged that this is a lacuna in the argument as presented
in Points of View (Moore, 1997). Moore offers a brief response to the issue in (forthcoming, fn. 8), which
we discuss further below.
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one also has to account for the way in which their respective perspectives contribute
towards their truth. We will see below that in the case of gravitational energy, it seems
as if this is impossible even from a particular point of view. In this case, then, one
cannot even present a complete representation of physical reality from a unified point
of view—let alone from no point of view! This threatens the weakened conclusion (4′)
and a fortiori the possibility of an absolute conception of reality. We will then propose
an alternative representation of gravitational energy that is not from any particular
point of view. Plausibly, this is an absolute representation of gravitational energy.

3 Absolute representations, coordinate-independence, and
geometric objects

We now connect these abstract issues to contemporary physics. Firstly, we contrast
the notion of absolute representation with the distinction between coordinate-
independence and coordinate-freedom (§3.1). Secondly, we argue that the possibility
of coordinate-independent representations requires that physics employs so-called
geometric objects (§3.2). In the next section, we present a challenge to the possibility
of an absolute representation of reality: the gravitational stress-energy pseudotensor
is not a geometric object, and hence does not admit of an absolute representation.

3.1 Coordinate-independence

A key way in which perspectives enter physics is via coordinate systems. We under-
stand a coordinate system to be an assignment of tuples of real numbers to spacetime
points in a way that respects the structure of spacetime (e.g. smoothness). Each coor-
dinate system codifies a certain perspective. For instance, the ‘lab frame’ is associated
to a coordinate system in which the laboratory is at rest, i.e. in which the spatial
coordinates of the lab remain constant over time. The lab frame thus embodies the
perspective of the lab. Claims that are made with respect to these coordinates—for
instance: the ball moves at 50 km/h—are from the lab’s perspective. They are incom-
patible with those from another frame, say that of a car that drives past the lab. From
the perspective of the driver of the car, the ball moves at 20 km/h. Both claims are true
from their respective points of view. But one cannot form another true representation
by simple addition: “the ball moves at 50 km/h and also at 20 km/h” is necessarily
false in any frame. The use of coordinates in physics thus seems to inhibit physicists’
duty to construct absolute representations.

The most straightforward way to reveal how a pair of coordinate-dependent rep-
resentations is made true by reality is to proffer a coordinate-free representation that
indirectly endorses the coordinate-dependent ones. Call the lab frame x , and the car
frame x ′. Then vl , vc and vb denote the velocity of the lab, car and ball respectively
from the lab’s point of view, and v′

l , v
′
c and v′

b denote these same quantities from the
car’s point of view. Moreover, let vlb denote the relative velocity between the lab and
the ball, and likewise for other combinations. The boldface indicates that this quantity
is coordinate-invariant, that is, that it does not depend on a choice of coordinates. In
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other words, velocity differences v are from no point of view. The quantity vb stands
to vlb as the expression “tomorrow” uttered on Monday stands to the expression “the
day after Monday” uttered whenever. It is possible to appeal to invariant quantities to
reveal how claims from different perspectives are made true by reality:

“The velocity of the ball is 50 km/h”, uttered from the lab’s point of view, refers
to the velocity difference between the ball and the lab (vb ≡ vlb); and the latter
quantity is 50 km/h (vlb = 50). “The velocity of the ball is 20 km/h”, uttered
from the car’s point of view, refers to the velocity difference between the car and
the ball (v′

b ≡ vcb); and the latter quantity is 20 km/h (vcb = 20). The difference
in perspective is accounted for by the fact that the car moves at 30 km/h with
respect to the lab (vlc = 30).

(Here, of course, we are using the standard formula for non-relativistic addition of
velocities.) This account does not depend on any choice of coordinates. Indeed, it
does not even presuppose a coordinate system; it is truly coordinate-free. In order to
vindicate Moore’s argument for the possibility of absolute representations, it would
seem that physics has to produce coordinate-free representations of reality.

However, Wallace (2019) has pointed out that coordinate-independence does not
require coordinate-freedom: there are coordinate-independent representations that are
not coordinate-free. For an example, consider the claim that the velocity of the car is 30
km/hmore than the velocity of the ball. This claim presumes a coordinate system, since
“the velocity of the car” and “the velocity of the ball” are onlywell-definedwith respect
to a specific frame of reference. But it is true in any inertial system of coordinates,
where inertial coordinates are those adapted to a reference frame that moves inertially.
Insofar as inertial frames are concerned, then, this claim is coordinate-independent.
Again, by appeal to such representations it is possible to proffer an account that reveals
how claims from different perspectives are made true by reality:

Let x ′′ denote an arbitrary reference frame. “The velocity of the ball is 50 km/h”,
uttered from the lab’s point of view, refers to the difference between the velocity
of the lab and the velocity of the ball (vb ≡ v′′

b − v′′
l ); and that quantity is 50

km/h. “The velocity of the ball is 20 km/h”, uttered from the car’s point of view,
refers to the difference between the velocity of the car and the velocity of the
ball (v′

b ≡ v′′
b − v′′

l ); and that quantity is 20 km/h. The difference in perspective
is accounted for by the fact that the difference between the velocity of the car
and the lab is 30 km/h (v′′

c − v′′
l = 30).

This account, too, does not presumeany frame’sparticular point of view—even though
it does presume some frame’s point of view.

There are thus two distinct ways in which one can rid physics of coordinate-
dependence. The first is to produce coordinate-free representations, whilst the second
is to produce coordinate-independent representations whose truth does not depend
on the adoption of any particular frame of reference. For now, we will stay neutral
on whether the former is required for absolute representations or whether the latter
suffices. We return to this question in §7.
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We saw in the previous section that there is a weaker version of Moore’s argument
that does not establish the possibility of an absolute representation of reality, but only
of a representation of reality—all of reality—that is from a one unified point of view. In
the language of coordinates, this amounts to a representation from within a particular
reference frame that can yet reveal how claims within different reference frames are
made true by reality. In our example, one can choose to adopt the lab frame and express
all velocities within that frame. It is then possible to account for the claim that the
ball’s velocity is 30 km/h from the car’s perspective as follows: the car’s velocity is
30 km/h (vc = 30), and the ball’s velocity from the perspective of the car is equal to
the difference between the ball’s velocity and the car’s velocity (v′

b ≡ vb − vc). This
is a coordinate-dependent representation, yet it resolves the incompatibility between
the car’s and the lab’s point of view.

Of course, the lab’s reference frame is in no way special. If it were then the above
account would not really reveal how a pair of coordinate-dependent representations
are made true by reality, since it does not mention the supposedly privileged role of the
lab frame. This is just the upshot of what Bell (1976) calls the ‘Lorentzian pedagogy’:
“the laws of physics in any one reference frame account for all physical phenomena,
including the observations of moving observers.” This piece of pedagogy entails that
one can offer a complete representation of reality from any point of view within the
range of perspectives represented by different choices of coordinates. For example,
one could instead adopt the car’s frame x ′ and account for the velocity measurements
within the lab from that perspective. Crucially, this only works if none of these frames
is in some way privileged.

Perhaps Moore would criticise this construction on the basis that any such account
does not fully explain the role of the difference in perspective between the lab and
the car. Take the story from the lab’s perspective. This account’s explanation of the
contribution of perspective appealed to the fact that the velocity difference between
the lab and the car is 30 km/h (vc − vl = 30). But this fact itself is represented from
the perspective of the lab. Yet the difference made by their respective perspectives
transcends the lab’s point of view: it is the same difference whatever perspective one
adopts. This, of course, is just the lacuna between the weaker conclusion (4′), and
Moore’s intended conclusion (4).

Whether or not one believes that absoluteness requires coordinate-independence
or coordinate-freedom, however, the difference here is moot: for the case in which
we are interested, it seems impossible to offer a consistent account of the difference
in perspective even from any arbitrary perspective. This means that it is a fortiori
impossible to construct a truly absolute representation. As we show below, this is the
case when a theory is partially formulated in terms of non-geometric objects. When
a theory posits non-geometric objects, and those objects are interpreted as physically
real, it seems that the possibility of an absolute representation of physical reality
is foreclosed. This is the challenge to Moore’s argument—whether the argument’s
conclusion is taken as (4) or only (4′)—that this article aims to answer.
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3.2 Geometric objects

We turn now to the definition of these geometric objects: amathematical notionmaking
its first appearance in the literature in Nijenhuis (1952); Schouten (1954); Trautman
(1962, 1965). It turns out that there are two definitions of a geometric object available
in the literature: a ‘traditional’ and a ‘modern’ one. Since the former is somewhat more
intuitive, we will rely on it in what follows.6

The kinds of object inwhichwe are generally interested in contemporary theoretical
physics are fields. Broadly, a field assigns a value to each point on amanifold. The latter
usually represents spacetime. Neither the manifold nor the field involve coordinates:
both are typically characterised ‘intrinsically’.7 But suppose that one has defined a
local coordinate system, x , on the manifold, that is, an assignment of an n-tuple of
coordinates to each point of the manifold. One can then express the values of the
field within these coordinates: call the result the field’s components in a coordinate
system. The field may generally have different components in different coordinate
systems. For a slightly contrived example, consider a ‘velocity field’ that assigns a
velocity value to each point in spacetime. The components of this field would depend
on the velocity of the coordinate system itself (with respect to some arbitrarily chosen
standard).

For some arbitrary point p ∈ M , consider a pair of arbitrary coordinate systems
around p. According to the traditional definition, a geometric object consists of

1. a set of components (a set of N real numbers) for each coordinate system, and
2. a well-defined rule relating the components in the one coordinate system to the

components in the other.

The transformation rule in question is ‘well-defined’ in the region of overlap only
if it forms a group: (1) there is an ‘identity’ transformation that leaves every set of
components the same; (2) for each coordinate transformation, there is an ‘inverse’
transformation that undoes the first; (3) coordinate transformations are transitive, so
the successive application of well-defined coordinate transformations is itself a well-
defined coordinate transformation; and (4) coordinate transformations are associative,
so it doesn’tmatter whether one evaluates successive coordinate transformations ‘from
the left’ or ‘from the right’. For example, let x , x ′ and x ′′ denote three coordinate
systems. O is a geometric object only if the transformation O → O ′′ defines the same
object as the transformation O → O ′ → O ′′. If this is not the case, then the object
is non-geometric. To put this succinctly, let (O ′)′ denote the result of first applying
a transformation to O from x to x ′, and then a transformation from x ′ to x ′′; and let

6 On themodern definition, geometric objects are defined as sections over natural bundles on amanifold. Let
M be a base manifold, P a bundle over this manifold with projection map π , and let d be a diffeomorphism
of M onto itself. Then P is a natural bundle iff d induces a unique diffeomorphism φ of P such that
φ ◦ π = π ◦ d. Let σ be a section of P , i.e. a function σ : M → P such that π(σ(p)) = p. Then σ is a
geometric object iff P is a natural bundle. This means that to any diffeomorphism d of the base manifold,
there is associated a unique transformation σ → φ∗σ , where φ∗ is the pullback map of φ. Generally, on
the modern conception a geometric object is defined over a natural bundle with a well-defined pull-back
under diffeomorphisms of the base space (Kolář et al., 1996).
7 Wallace (2019) has rightly pointed out that coordinates still lurk in the traditional, ‘intrinsic’ characteri-
sation of a manifold. We’ll set this aside here.
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O ′′ denote the result of applying a transformation to O from x directly to x ′′. Then
for a geometric object, (O ′)′ = O ′′.8 We will show below that it is the failure of
this property for non-geometric objects that precludes their representation from no
particular point of view. This is important because physics does sometimes involve
non-geometric objects that prima facie seem to represent physically real quantities—
such as the gravitational stress-energy pseudotensor discussed in the next section.

Most fields used in contemporary physics are geometric objects: any vector or
tensor field is geometric (this includes the metric tensor that determines the geometry
of spacetime in relativity theory); in addition, however, certain non-tensorial objects,
such as the Christoffel symbols, are also geometric. We would further like to point out
that certain bona fide physical quantities are represented by non-geometric objects.
The Yang-Mills field in fibre bundle formulations of electromagnetism, for example,
is a non-geometric object, because (briefly) theU (1) bundle is not soldered to the base
space (Dewar, 2020). Another example, relevant to particle physics, is that of spinor
fields (on which see Pitts, 2012). We therefore believe that many recent commentators
are too quick to presume without much justification that geometric objects are the sine
qua non of modern physics.

Nevertheless, in many cases the presence of non-geometric objects is problematic.
In particular, we claim that when physics involves non-geometric objects, and those
non-geometric objects are taken to represent a physically real quantity, it becomes
impossible to offer a unified account of physical reality—inclusive of the difference
made by the perspective of different observers—from a single frame of reference à la
the Lorentzian pedagogy. But physics does seem to involve non-geometric objects, for
instance the gravitational stress-energy pseudotensor we discuss in detail below. This
poses a challenge to Moore’s claim that physics is in the business of finding absolute
representations, because it constitutes a counterexample to the weaker conclusion (4′)
from the previous section. If it is not even possible to offer a unified account of reality
from any one point of view, then radical perspectivalism looms.

Let us explain this in more detail. Suppose that one has representations of O in x
and x ′. In order to offer an account that reveals how both representations are made
true by reality, one could adopt a third point of view, x ′′. Part of that account must
‘translate’ the representation of O from x and x ′ respectively to x ′′. This results in
a pair of representations which we will denote (O ′)′ and O ′′. Because O is a non-
geometric object, generally (O ′)′ 	= O ′′. Therefore, even from the perspective of an
arbitrary coordinate system x ′′, the representation of O in x and the representation
of the same object O in x ′ seem to present reality differently—they make different
claims about the value of O . To make this concrete: it is possible that, considered from
x ′′, O as represented from x vanishes in a certain region whereas O as represented
from x ′ does not vanish in that region. The transformation rules between coordinate
representations of a non-geometric object are not well-behaved: they are not mutually
coherent. It seems that there is no way to reconcile such representations, and so one
cannot reveal how both are made true by “by the same reality in every case” from an
arbitrary point of view.

8 For a clear discussion of this property of geometric objects, see Duerr (2019b).
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Compare this to the case of velocities discussed before. The key fact here is that
velocity transformations are additive: if the car frame x ′ moves at 30 km/h with respect
to the lab frame x , and if an arbitrary third frame x ′′ moves with (say) 10 km/h with
respect to the car frame, then the latter frame moves with 30 + 10 = 40 km/h with
respect to the lab frame. So, if vb is 50 km/h, then v′′

b is 10 km/h; but equally, if v′
b is

20 km/h, then (v′
b)

′—the velocity of the ball with respect to the car with respect to an
arbitrary third frame—is also 10 km/h. The result is the same in each case. Therefore,
the transformation rules for velocities are coherent: one can freely switch from one
perspective to another without contradiction. The representations from these different
perspectives are made true by the same reality in each case.

To sum up the story so far, before we present our main case study: we started with
Moore’s argument for the possibility of an absolute representation of reality—that
is, a representation of reality that is from no point of view. We noted that the argu-
ment as presented in Moore’s book Points of View (1997) contains a lacuna, but that
it is at least possible to establish the weaker conclusion that there is a representation
of reality, which includes an account of the difference made by a representation’s
perspective, from one unified point of view. In physical terms, an absolute represen-
tation is at least coordinate-independent, and one (but not the only) way to obtain
coordinate-independence is coordinate-freedom. But even a representation that is
not coordinate-free may still offer a unified representation of reality in the weaker
sense that it can account for any perspective—this is the Lorentzian pedagogy. But
this is only true if physics employs geometric objects. It is impossible to offer a
unified representation of a non-geometric object from any particular perspective,
because no such representation can account coherently for the way in which that
same non-geometric object is represented from other perspectives. Consequently, it is
also impossible to construct a coordinate-independent (hence absolute) representation
from an equivalence class of coordinate-dependent ones. This poses a dilemma: either
non-geometric objects are not physically real, or absolute representation in physics is
not possible. In the case of the gravitational energy, to be discussed in the next section,
the former horn is objectionable on physical grounds. But since Moore’s argument is
a priori, the second horn must be false too. The aim of the remainder of this article is
to offer a way out of this dilemma.

4 The gravitational stress-energy pseudotensor

This section presents the gravitational stress-energy pseudotensor. This is a non-
geometric object that nevertheless seems to represent a physically real quantity in the
framework of general relativity (GR). If this is indeed the case, then modern physics
would seem to deal with irreducibly non-absolute representations. This would clearly
conflict with Moore’s view of physics as being in the business of the discovery of
absolute representations of reality. Ultimately, we will argue that one can represent
gravitational energy absolutely, although this requires a revision of both its mathe-
matical and metaphysical nature. But in this section we first discuss why the standard
approach invoking the pseudotensor is not up to the job.9

9 The (non-)existence of gravitational stress-energy in general relativity has received much attention in the
recent philosophical literature (see e.g. Lam, 2011; Hoefer, 2000; Curiel, 2019; Read, 2018; Duerr, 2019a;
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The idea that both energy and momentum are conserved quantities is familiar
already from classical mechanics, and carries over straightforwardly to the special
theory of relativity (SR). In SR, the density and flux of the energy and momentum
of matter (which here includes non-gravitational fields such as the electromagnetic
field) is represented by the so-called ‘stress-energy tensor’, T μν , which is a bona fide
geometric object. The conservation of energy and momentum is expressed in terms of
this tensor as follows

∂μT μν = 0. (1)

This equation states that the total flux of stress-energy through a point vanishes, that
is, that stress-energy is conserved at any point in spacetime.10

In GR, on the other hand, it seems at first as if it is not the case that energy is con-
served. In particular, the lack of global symmetries of a (curved, dynamical) spacetime
in GR means that

∂μT μν 	= 0, (2)

which would seem to imply that material stress-energy is not a conserved quantity in
GR. But perhaps this should not surprise us! For it is often—though not universally—
claimed that, inGR, the gravitational degrees of freedomalso carry energy, for example
in gravitational waves.11 It might still be the case, then, that the total energy of a
system—material and gravitational—is conserved.

In order to formalise this claim, one can introduce a gravitational stress-energy
pseudotensor, tμν . (The reason this is called a pseudotensor becomes clear below).12

The claim then is that the total stress-energy Tμν := T μν + tμν is conserved, i.e. that

∂μT
μν := ∂μ(T μν + tμν) = 0. (3)

This is indeed the case: in GR, there always exists a tμν such that (3) is satisfied.
Therefore, it seems that one finds continuity between classical mechanics, special
relativity and general relativity: in each theory, the total energy of the universe is
locally conserved. The only difference is that in GR, unlike in its predecessors, the
gravitational field itself carries energy.

There are weighty physical reasons to believe that the gravitational field really does
carry stress-energy. Firstly, there is the above-mentioned continuity with classical and
special-relativistic mechanics: in both theories, total energy is conserved. Moreover,
such conservation principles are certainly not ‘idle posits’ of those theories. The scien-
tific realist would therefore do well to preserve the principle of conservation of energy

Pitts, 2010). Here, wewill present only the details of the debates regarding gravitational stress-energy which
are important for our purposes.
10 There are three points to make here. (1) As is standard, in the above Greek indices are used to denote the
components of an object in some coordinate system. (2) Strictly, Eq. 1 holds only in the frames of references
adapted to the structure of Minkowski spacetime of SR—see Read (2018) for discussion. (3) Eq. 1 can be
converted into a conservation law through a region by integrating and applying Stokes’ theorem.
11 For an article questioning this orthodoxy, see Duerr (2019c).
12 Technically, pseduotensors can be defined from superpotential terms in an action, and are related to
corner charges via Noether’s second theorem—see e.g. de Haro (2022). For our purposes here, the only
feature of pseudotensors which matters is that they are not geometric objects, although we will discuss
further the connections between pseudotensors and superpotentials later in this article.
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by positing the conservation of Tμν . Secondly, quite apart from past physics the con-
servation of energy and momentum are generally regarded as fundamental principles
in contemporary physics. For example, Lange (2007) thinks of such principles as
‘meta-laws’ that modally constrain the laws of nature. In this way, conservation prin-
ciples have explanatory import. Finally, GR simply does seem to describe a universe in
which entities associated with gravitation carry energy. This is most clearly exempli-
fied by the phenomenon of gravitational waves: fluctuations in the gravitational field
that can have very real effects, as recently detected in the Nobel Prize-winning LIGO
experiment.13

However, the fact that tμν is a pseudotensor—which indicates inter alia that it is
a non-geometric object!—has led several philosophers to object to the claim that it
represents a physically real quantity. In fact, there are at least three distinct problems
related to tμν that are discussed in the literature:

1. In GR, there are in fact infinitely many distinct pseudotensorial quantities that are
candidates to represent gravitational stress-energy: from Noether’s first theorem,
one for each rigid symmetry of the Lagrangian density (Pitts, 2010);

2. Conservation laws such as Eq. 3 are closely associated to (trivial?) mathematical
identities (Brading, 2005);

3. Pseudotensors are not geometric objects: they don’t have associated well-defined
transformation laws (Duerr, 2019b).

The first problem refers to the fact that Eq. 3 does not define tμν uniquely. Rather, Eq.
3 is satisfied for any object such that

tμν = ∂λUμλν − 1

8π
Gμν, (4)

where Gμν is the Einstein tensor (appearing on the left-hand side of the Einstein
equations) andUμλν = Uμ[λν] is a so-called ‘superpotential’: different superpotentials
lead to different pseudotensors.14 This raises the question: which of the infinitelymany
pseudotensors (associated to one of infinitely many superpotentials) is the ‘real’ one
that represents the gravitational field’s ‘true’ stress-energy? Relatedly, the second
problem is based upon the thought that each of these infinitely many conservation
laws is in fact a mathematical identity, which it would seem cannot have any non-
trivial physical content. We will return to these first two problems—and especially the
non-uniqueness problem—in §6.

For our present purposes, however, it is clearly the third problem that is most rele-
vant. The fact that the pseudotensor is not a geometric object means, as explained in
§3, that it is problematically coordinate-dependent. As Duerr (2019b, p. 9) writes,
“pseudotensors are viciously coordinate-dependent: The transformation rules of
pseudotensors exhibit a dependence on the coordinates employed.” This coordinate-
dependence of the transformation rulesmeans, inMoore’s terminology, that it won’t be

13 For a recent defence of this view, seeGomes andRovelli (2023). Note, though, that these authors embrace
the mainstream position that gravitational energy is non-localisable in GR.
14 See Trautman (1962) for a classic discussion of this ambiguity, and de Haro (2022) for a more recent
source.
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possible (in any straightforwardway) to integrate these representations even indirectly.
This in turn means that one cannot construct a coordinate-independent representation
of it, either in an entirely coordinate-free fashion or from within an arbitrary coor-
dinate system. There is therefore a direct conflict between the fact that gravitational
energy is represented by a non-geometric object on the one hand, and Moore’s claim
that physics must provide an absolute representation of physical reality on the other.
It is this conflict that leads to the dilemma raised above: either gravitational energy is
not a physically real quantity after all, or it is but one cannot represent it absolutely.
Although many philosophers have taken the first horn in response to this dilemma,15

we believe that it is undesirable for physical reasons as set out above. But this leaves us
with the latter horn, which seems to conflict with the (a priori) case for the possibility
of an absolute representation of reality by physics.

5 An absolute representation of gravitational stress-energy

Fortunately, there is a way out of this dilemma. It is in fact possible to construct a
bona fidegeometric—indeed, tensorial!—object that can represent gravitational stress-
energy. By taking this object to represent gravitational stress-energy in GR, the vicious
coordinate-dependence associated with non-geometric objects is thereby avoided. The
aim of this section is to put forward this alternative representation of gravitational
energy—first proposed in the physics literature by Szabados (1991, 1992)—bymeans
of which one can overcome the dilemma between the real existence of gravitational
energy and the possibility of an absolute representation of reality.

This solution does require a significant revision to the concept of gravitational
energy. In particular, the geometric object that represents such energy is not defined
over the spacetimemanifold itself, but rather over the so-called bundle of linear frames:
amathematical structure that consists of all possible ‘choices of basis’ for vector spaces
at each point of spacetime. If taken seriously, this picture implies that gravitational
energy is not a field that ‘lives’ on spacetime, but rather within this bundle of frames.
Wewill comment on the metaphysical implications of this picture in §7, but overall we
believe that taking an object on the bundle of linear frames to represent gravitational
energy is a price worth paying in order to reconcile its existence with the possibility
of its absolute representation.

Szabados (1992) frames the problem of the vicious coordinate-dependence of pseu-
dotensors as a contradiction with the principle of ‘general covariance’, which (in
his words) states that nature is most appropriately described in terms of geometric
objects.16 We have seen that this does not seem to be the case for the gravitational
stress-energy pseudotensor. Szabados proposes a solution as follows:

15 See e.g. Duerr (2019b). Sometimes, the non-geometric nature of pseudotensors is conflated with the fact
that their components can be made to vanish in some coordinate system—see e.g. Lam (2011). These are
distinct features of an object: for example, Christoffel symbols are geometric, but have components which
can be made to vanish at a point in some coordinate system. And conversely: some pseudotensors, e.g. that
of Møller, are not geometric objects, but cannot be made to vanish at a point—our thanks to Brian Pitts for
pointing this out this latter example to us.
16 In this article, we avoid couching the issue in terms of ‘general covariance’, for that term itself is
notoriously fraught in GR: see Norton (1993) for background.
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However, if the geometric objects [...] were not required to be geometric objects
on the spacetime manifold, but they were allowed to be geometric objects on
the manifold of frames of the spacetime; i.e. on the bundle of linear frames
L(M) over M , and if the previous coordinate and/or gauge dependent quantities
and formulae could be reformulated in terms e.g. of differential forms on L(M),
then the contradiction with the principle of general covariance would be resolved
(Szabados, 1992, p. 2522).

In brief, then, Szabados’ idea is that one could reformulate the offensive pseudotensor
as a geometric object defined over the bundle of linear frames. Since this object is geo-
metric, it allows for an absolute representation of gravitational energy. The remainder
of this section is devoted to a more detailed explication of Szabados’ proposed solu-
tion. The reader already familiar with the concept of a bundle of linear frames can
skip ahead to §5.2.

5.1 Mathematical preliminaries

Let us start with the bundle of linear frames, denoted L(M) by Szabados. In order to
understand this concept,wefirst require the notion of a vector space.Generally, a vector
space consists of a set V—the set of vectors—and a pair of binary operations: vector
addition and scalarmultiplication. The first operation allows one to add vectors to form
another vector; the second to multiply a vector by a real number to obtain another
vector. These operations must satisfy certain conditions, such as associativity and
commutativity. If the vectors are two-dimensional, one can represent them as arrows
on a fixed plane. Then vector addition is carried out by the familiar parallelogram rule,
whereas scalar multiplication scales the length of a vector.

Although it is customary to think of vectors as tuples of real numbers, the elements
of a vector space are distinct from those tuples; the latter are said to represent the
former. The ordered pair (2, 3), for example, can be taken to represent a vector v

that points in the direction ‘two steps east and three steps north’. But that is not the
only way to represent this vector. The coordinates (2, 3) only represent a vector in
the ‘two-east, three-north’ direction conditional on the choice of the ‘east’-vector and
the ‘north’-vector as basis vectors. Given this basis, it is possible to express any other
vector in terms of them: this many steps east, and that many steps north. But one
could equally well have chosen a basis that consists, say, of a vector

√
2 units in the

‘north-east’ direction and a unit vector in the east direction. In terms of this basis, the
same vector v is now represented as (2, 1): two steps of

√
2 in the north-east direction

equals two steps to the north and two steps to the east; add another step to the east
and one arrives at the same point as before. The crucial point here is that (2, 3) and
(2, 1) are different representations of the same vector, v, in different bases. Thus, the
numerical representation of a vector depends on an antecedent choice of basis vectors.

Generally, for an n-dimensional vector space, a basis consists of a choice of n
linearly independent vectors (that is, vectors that are not sums of multiples of one
another). Indeed, one can as well define the dimensionality of a vector space as the
number of bases vectors required to ‘span’ it. The choice of basis in effect consists of
a conventional choice for which direction to call the x , y, z, etc. axes, and for the unit
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in each direction. Once one has chosen a basis, each further vector can be expressed
as a sum of multiples of these basis vectors. Moreover, it is also possible to consider
the set of all possible bases for a certain vector space. This set itself has a non-trivial
structure, since different bases are related by elements of the so-called general linear
group (which is represented by the set of n × n matrices). The elements of this group
act on any element within the set of bases to obtain another basis. We will return to
the set of bases below.

First, however, we discuss the idea of a tangent vector space. Given a point p on
a manifold M , one can always define the vector space tangent to that point. Think of
a point on a curve: one can construct a tangent line parallel to the curve at that point;
likewise, one can construct a tangent plane parallel to a point on a curved surface. If
one further endows such a line or plane (or higher-dimensional generalisation thereof)
with the structure required for a vector space, then one obtains the tangent vector
space of that point. For example, the tangent vector space at a point on a surface
consists of the arrows within the plane parallel to the surface at that point, together
with the operations of vector addition and scalar multiplication. We will let Tp denote
the tangent vector space of a spacetime point p.

If spacetime is flat, then there is a unique (or ‘canonical’) map between the tangent
spaces at different points. Intuitively, the planes that are parallel to different points
of a flat surface fully overlap, so one can identify them as the same plane. The more
technical sense in which this is the case is that for any pair of points p, q on a flat
space, one can transport a vector from Tp to Tq along any arbitrary path between p and
q, and obtain the same result for every path. But GR tells us that spacetime is not flat,
but curved. In a curved spacetime, the transportation of a vector from Tp to Tq along
different paths between p and q does not always yield the same result. If spacetime is
curved, then, each point has a unique tangent vector space. Consequently, there is no
path-independent way to transport a vector from one point to another.

To illustrate this latter case, consider the surface of the earth. Suppose John points
in some direction on the North Pole, and Jane points in some direction on the equator.
Do they point in the same direction along the surface of the Earth? The question is ill-
posed insofar as the plane parallel to the earth’s surface at the North Pole is different
from the plane parallel to the earth’s surface at the equator. Of course, Jane could
move to the North Pole, all the while keeping to point in the same direction: if she
points in the same direction as John once she has arrived at the North Pole, then they
were pointing in the same direction all along. But the outcome of this ‘experiment’
crucially depends on the path Jane takes. It is possible that if Jane were to move from
the equator to the North Pole along the shortest path, she would end up pointing in a
different direction than John; yet if she were to move some distance along the equator
first and then travel northwards, she would end up pointing in the same direction as
John. Thus, there is no determinate answer to the question whether John and Jane
pointed in the same direction or not: it depends on an arbitrarily chosen path between
them. This illustrates the sense in which, on a curved spacetime, there is no ‘global’
vector space within which one can compare directions. Each point of spacetime has
its own tangent vector space, and there is no canonical map between them.

We now have all the ingredients in place to define the bundle of linear frames L(M)

over a manifold M . Firstly, each point p ∈ M has its own associated vector space Tp.
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Secondly, each such vector space has a set of bases. For any point p, let Fp denote
the set of bases for Tp (or, more accurately, a structured ‘fibre’ of bases). Just like
there is no canonical map between the vector spaces themselves, there is no canonical
map between their respective bases. Put differently, one simply cannot say whether a
basis in Fp is the same as a basis in Fq for p 	= q. Finally, the bundle of frames is the
disjoint union of all Fp, for any p ∈ M : L(M) := ⋃

p∈M Fp. The elements of L(M)

are therefore ordered pairs (p, f ) such that f ∈ Fp. For a given p, the set of elements
(p, f ) ∈ F are just the different vector bases for Tp. In other words, the ‘points’ of
the bundle of linear frames are local vector bases. The bundle of linear frames L(M)

thus contains the possible bases for all tangent vector spaces of a manifold.17

The final concept that is helpful in what follows is that of a section of L(M): this is
a continuous function from M to L(M) such that each point p in M is mapped onto a
point (p, f ) of L(M), i.e. a unique basis for Tp. A section thus specifies a choice of
basis (not necessarily orthonormal) at each point of M in such a way that this choice
of basis varies continuously as one moves across M . This is also known as a vielbein.
This notion of a section does not play a direct role in this section, but it will help us to
solve the non-uniqueness problem in §6.

5.2 The Sparling form

With this set-up in place, Szabados (1991, 1992) defines two important objects: the
‘Nester-Witten form’, ui and the ‘Sparling form’, ti .18 Both of these are defined on
L(M). Just as a field over a manifold M assigns a field-value to each point of M , a
field over the bundle of frames L(M) assigns a field-value to each point of L(M),
that is, to each choice of basis for each tangent vector space. Although such a field is
mathematically well-defined, it may seem odd physically: we canmake sense of a field
on spacetime, but what does a field defined over a manifold of vector bases represent?
What does it mean to assign a field value to a choice of basis? We will comment on
the metaphysical interpretation of such fields in §7; here we restrict ourselves to their
mathematical definition.

Although the precise definitions of ui and ti are not crucially important for what fol-
lows, we provide them here for completeness. Those not interested in themathematical
details may skip ahead to the theorem below.

Let L(M) denote the linear frame bundle over M , {δi } (i = 1, . . . , m) the standard
basis forRm , i.e. δi = (0, . . . , 1i , . . . 0), and θ = θ iδi the canonicalRm-valued 1-form
on L(M). For any r = 0, 1, . . . , m, let


a1...ar := 1

(m − r)!εa1...ar er+1...em θer+1 ∧ . . . ∧ θem , (5)

17 In technical terms, L(M) is a principal fibre bundle over M with structure group GL(n,R), where n is
the dimension of M .
18 Following Szabados (1992), Latin indices denote objects on L(M).
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where ε denotes the Levi-Civita symbol and ∧ denotes the wedge product on differ-
ential forms.19 Letting ωa

b be a spin connection on L(M), the Cartan equations for
torsion 
a and curvature �a

b are as usual given by


a = dθa + ωa
b ∧ θb, (6)

�a
b = dωa

b + ωa
c ∧ ωc

b. (7)

The Nester-Witten form is then defined as:

ui := −1

2
ωab ∧ 
iab. (8)

The exterior derivative of the Nester-Witten form is

dui = −1

2
�ab ∧ 
iab + 1

2

c ∧ ωab ∧ 
iabc + ti , (9)

where

ti := −1

2

(
ωc

i ∧ ωab ∧ 
cab + ωa
c ∧ ωcb ∧ 
iab

)
(10)

is the Sparling (m − 1)-form.
So much for the mathematical construction of these objects. The significance of the

Nester-Witten form and the Sparling form lies in the following theorem:20

Theorem 1 (Sparling–Dubois-Violette–Madore)For anyRm∗-valued horizontal (m−
1) form Ti satisfying DTi := dTi − ωc

i ∧ Tc = 0 and κ ∈ R, the following statements
are equivalent:

1. ωa
b is torsion free, 
a = 0, and 1

2�
ab ∧ 
iab + κTi = 0;

2. κTi + ti = dui ;
3. d (κTi + ti ) = 0.

The first condition expresses the fact that a metric connection is torsion-free and
satisfies Einstein’s equations, so (1) is satisfied whenever the theory’s equations of
motion are satisfied.21 The theorem states that this is the case if and only if the Nester-
Witten form and the Sparling form jointly satisfy condition (2), if and only if the latter
form satisfies condition (3). Szabados (1992) notes that “in Einstein’s theory (3) looks
like as [sic] a conservation equation, while (2) gives us the ‘superpotential’ for the
conserved quantity κTi + ti : it is just the Nester-Witten form.” In particular, (3) states
that the sum κTi +ti is a conserved quantity, where Ti is thematter stress-energy tensor.

19 For background ondifferential forms, see e.g.Burke (1985). To reassure those unfamiliarwith differential
forms: the details of these objects and their constructions will not matter for our purposes!
20 The following is the theorem as stated by Szabados (1992); for original sources, see Sparling (1982);
Dubois-Violette and Madore (1987).
21 The pullback of Ti along a local section is independent of the choice of section, and yields a geometric
object apt to represent material stress-energy—see Szabados (1991, p. 24). Note, though, that as-yet no
energy conditions are imposed on said object: for the locus classicus on energy conditions, see Curiel
(2017).
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When ti is interpreted as a representation of gravitational stress-energy, (3) states that
the sum of matter and gravitational stress-energy is conserved—as desired. Therefore,
on this interpretation Theorem 1 tells us that the total sum of stress-energy is conserved
whenever the torsion-free metric connection satisfies the Einstein equations.

The second condition further deepens the parallel between the Sparling form and
the gravitational stress-energy pseudotensor, since it shows that the Nester-Witten
form acts as a ‘superpotential’ to ti . This provides further legitimacy to the suggestion
that the latter quantity represents gravitational stress-energy.

Of course, however, the crucial difference is that ui and ti are geometric objects!
Insofar as geometric objects are required for the possibility of absolute representation,
then, Theorem 1 proves that it is not impossible to provide an absolute representation
of gravitational stress-energy. This means that it is possible to escape the dilemma
raised before. Recall that the dilemma seemed to force a choice between the reality
of gravitational energy and the possibility of an absolute representation of physical
reality. The conservation of energy provides a physical reason to choose the first horn,
but Moore’s a priori case for absolute representation necessitates the second. We have
now shown, however, that it is possible to represent gravitational energy in a way that
does not lead to a vicious form of coordinate-dependence. Therefore, realism about
gravitational energy does not spoil the possibility of an absolute representation of it.

6 The non-uniqueness problem

It turns out that recourse to differential forms on L(M) also allows us to solve another
problem associated with pseudotensors: their non-uniqueness (recall that this was the
first problemwith pseudotensors presented in §4). To see how such a solution proceeds,
first recall that we can write a pseudotensor tμν on M in terms of a superpotential
Uμλν as per Eq. 4. But the pseudotensor satisfies this equation for any superpotential
that is antisymmetric in its second and third indices. Thus, different choices for the
superpotential lead to different—but, it would seem, equally valid—pseudotensors.

The situation here is somewhat analogous to the freedom to add a constant to the
total energy in classical mechanics. But the freedom here is worse, in the sense that
each pseudotensor is associated with a distinct charge via Noether’s theorem (de Haro,
2022). Put in termsof the distinction betweendeterminables anddeterminates, adding a
constant to the potential in classical mechanics simply changes the determinate value
of the same determinable quantity, but adding a superpotential to the pseudotensor
seems to result in a different determinable quantity altogether.

However, we can use features of the coordinate-independent framework developed
in the previous sections in order to at least alleviate—if not totally dissolve—the
non-uniqueness problem. We will make use of three facts:

1. We can write any superpotential in terms of a particular superpotential called the
von Freud superpotential (Trautman, 1962);

2. The von Freud superpotential is just the pullback of the Nester-Witten form along
a particular coordinate section (Szabados, 1992);
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3. Different superpotentials can be obtained from different pull-backs of the Nester-
Witten form.

Combining these facts, we get that any superpotential is related to the von Freud
superpotential, which has a coordinate-independent formulation in terms of theNester-
Witten form on L(M). Moreover, different superpotentials also correspond to the
pullback of the Nester-Witten form along different sections. This provides a sense
in which the distinct superpotentials—and hence their associated pseudotensors—
are simply different reflections on spacetime of the same geometric object on the
bundle of linear frames. Put differently, the Nester-Witten form unifies the myriad
choices of superpotential: “This reformulation may yield a unification of the different
pseudotensorial and rigid-basis-dependent approaches into a single manifest gauge
invariant formalism” (Szabados, 1992, p. 2522).

Clearly, these results will require some further support. Firstly, although Szabados
shows that all extant pseudotensors are derivable from the Sparling form, he doesn’t
quite prove that this is possible for all pseudotensors. Secondly, we have not proven
that the Sparling form itself is unique, so onemight worry that the same issue reappears
at the level of L(M). Addressing these issues will have to remain a mathematical tasks
for another day: our philosophical point here is simply that appeal to geometric objects
on L(M) has the potential to address not only the third problem for pseudotensors as
presented in §4 (non-geometric status), but also the first (non-uniqueness).

Indeed, even these limited results already offer us away to understand inmore detail
the relation between the coordinate-dependent representation of gravitational stress-
energy in terms of the pseudotensor and our coordinate-independent representation of
the samequantity by theSparling form. For they suggest that these quantities are indeed
representations of the same quantity; or, more precisely, it suggests that a pseudotensor
is no more than a particular way to pull back the Sparling form onto the spacetime
manifold. The different pseudotensors are, as it were, the spatiotemporal ‘shadows’
of the same object on the bundle of linear frames, seen from different perspectives
(i.e. sections/vielbeins). This result is particularly important for the realist, since it
is typically seen as a desideratum to be able to explain the way in which successor
theories relate to their predecessors. Think, for example, of the way in which classical
mechanics reduces to special relativity in the limit c → ∞.22 In our case, the Sparling
form is not a successor theory, but rather a successor quantity. But the same point
applies: it is a desideratum for the realist to show that the Sparling form in some sense
reduces to the stress-energy pseudotensors. The fact that the latter are the pull-backs
of the former shows that this is indeed the case. The close connection between the
Sparling form and the equivalence class of pseudotensors therefore shows that the
former is indeed a candidate to represent gravitational stress-energy, and at the same
time explains the success (albeit limited) of the latter in accounting for the conservation
of total stress-energy in GR.

22 Or v/c → 0, or whichever limit one prefers.
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7 Themetaphysics of frame bundles

Mathematically, it all works out: the Sparling form is a bona fide geometric object, and
it has the credentials to represent gravitational energy inGR.Metaphysically, however,
our proposal lands us in strange waters. The gravitational stress-energy is no longer
a field on spacetime, but rather on the bundle of linear frames. How seriously should
we take this representation? Relatedly, is this representation truly absolute? Since
the bundle of frames codifies choices of basis, that is, choices of coordinates for the
tangent spaces, it is not entirely coordinate-free. Up until now we have stayed neutral
on the question of whether absolute representation requires coordinate-independence
or coordinate-freedom. If the latter, it may seem as if our proposal does not yield an
absolute representation of gravitational energy after all. But we believe this depends
on how one interprets the bundle of frames.

We will present two options: a metaphysically deflationary one on which L(M)

provides a view from all possible perspectives, and a metaphysically inflationary one
on which L(M) provides a view from no perspective.

The metaphysically deflationary option does consider L(M) as a structure that
collects every possible choice of basis, where a choice of basis for a point p is under-
stood as a coordinatisation of Tp. Since the Sparling form is a field over this bundle,
and so assigns a value to every possible coordinatisation, there is a sense in which it
encodes a spacetime’s gravitational stress-energy from every possible perspective. It is
coordinate-independent, since the bundle of frames does not privilege any particular
basis, but not coordinate-free. On this proposal the Sparling form is the ‘view from
everywhere’. The proposal thus bears similarities to Pitts’ (2010) ‘Pittsified’ pseu-
dotensor, which is a collection of pseudotensors in every coordinate system. While
Pitts’ quantity (a bona fide geometric object!) has an infinite number of degrees of
freedom, however, the Sparling form has finitely many. It is therefore more correct to
think of the Pittsified pseudotensor as equivalent to the Sparling form for every choice
of section of the frame bundle (cf. §6).

The advantage of this option is that it is metaphysically deflationary. The ontology
of GR still consists of the spacetime manifold. It is true that the Sparling form requires
the bundle of linear frames, but there is a straightforward sense inwhichwe are already
committed to L(M) when we posit a manifold M , since the bundle of linear frames
is definable from the standard manifold structure. Weatherall (2015) makes this point
forcefully: “[When formulated in terms of a frame bundle] no additional structure has
been added to the theory. Any manifold gives rise, in a canonical way, to an associated
frame bundle. Thus there is a straightforward sense in which a relativistic spacetime
(M, gab) always comes equipped with a principal [frame] bundle over it; we just have
little occasion to mention it in ordinary applications of relativity theory”; a similar
point about definability and ontological commitment (which we endorse) is made
by Barrett (2017). The basic idea here is that if one has explicitly posited a certain
fundamental structure, then any further structure that one can define from the former
‘comes for free’.

To apply this line of thought to the case at hand: when one takes different sections
of the Sparling and Nester-Witten forms defined on L(M), one can derive different
pseudotensors and superpotentials (respectively) on M via the ‘pull-back’ construction
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(Szabados, 1992). Now, we claim (but do not here rigorously prove!) that ti and ui

can be defined from just the structure of standard GR (i.e. the usual geometric objects
of the metric and material fields on M , together with the Einstein equation). For the
union of all pseudotensorial conservation laws is equivalent to the Einstein equation
(Pitts, 2010), but if one has all such conservation laws, then one has the associated
conservation law—((3) in Theorem 1)—for the associated objects on L(M). So, the
structure of standard GR seems to allow one to define a suitable conservation law
for suitable objects on L(M), without the need to posit additional structure. If this is
correct, then it makes sense to say that it is only if one chooses a particular section of
L(M) that introduces additional structure toGR—tantamount to taking the perspective
of a preferred frame. But the point of our proposal is exactly that one does not have
to take any such perspective.

The downside is that coordinate-independence may not be enough to constitute
an absolute representation. Moore explicitly rejects this option: “The question is not
whether there can be representations that are from all points of view at once. It is easy
to think of the absolute as somehow encompassing the perspectival. But if this thought
amounts to anything, it certainly does not amount to the absurd idea that being from no
point of view is the same as, or even equivalent to, being from every point of view” (p.
66). However, we have seen that Moore’s own argument contained a lacuna: perhaps
it is at most possible to account for reality from one arbitrary perspective at once. If
that is the case, then coordinate-independence is the best we may hope for.

The metaphysically inflationary option, on the other hand, does not think of L(M)

as merely a bundle of frames, but as itself a substantival space on which fields such
as the Sparling form may live. In addition to the spacetime manifold M , then, there is
the manifold L(M). We were simply mistaken to try and locate gravitational energy
on the former: it is actually possessed by the latter. There is plenty of precedent for
such an approach: the electromagnetic potential, for example, is naturally interpreted
as a field on the so-called ‘bundle of connections’ (Jacobs, 2023).

The downside of this second option is that it seems less metaphysically parsi-
monious. The extent to which this is indeed the case is questionable. After all, the
mathematical representation of L(M) remains the same despite the inflationary inter-
pretation, so it is still implicitly definable fromGR’s spacetime structure. But we admit
that this option seems to make an additional metaphysical posit in that it treats L(M)

as a substance. This difference between the inflationary and deflationary approach
thus cuts somewhat finer than Barrett’s criterion of commitment in terms of implicit
definability. This is simply the cost we pay for a coordinate-free representation of
gravitational energy. Again, compare Jacobs’ fibre bundle realism: the price of an
increased ontology is worth the benefits.

It might also seem odd to identify a field on L(M) with gravitational stress-energy.
After all, gravity concerns the curvature of spacetime itself, not of someothermanifold.
Theorem1, however, tells us that theSparling formcertainly plays the functional roleof
gravitational energy, insofar as it satisfies the conservation equation d (κTi + ti ) = 0
(Read, 2018). Moreover, the Theorem also relates this conservation equation to the
Einstein equation in a natural way, so the Sparling form is not just an idle posit but
an integral part of the theory. Finally, as explained in the previous section, there is a
natural way to understand the gravitational stress-energy pseudotensor as the ‘pull-

123



European Journal for Philosophy of Science            (2025) 15:15 Page 23 of 26    15 

back’ of the Sparling form onto the spacetime manifold. Insofar as the pseudotensor
was a natural candidate for gravitational stress-energy, then, and bar any worries about
the fact that it is a pseudotensor, the Sparling form is just as natural—if not more so,
due to the fact that it can unify different pseudotensors as explained in the previous
section.

The main benefit of the inflationary option is that arguably it provides a coordinate-
free, rather thanmerely coordinate-independent, representation of gravitational energy.
If one concurswithMoore that coordinate-freedom is a necessary conditionon absolute
representation, then the inflationary option is the only option available. We therefore
see this as a fruitful interaction between a priori metaphysics and philosophy of
physics: if the inflationary option is correct, then a concern for absolute representation
has lead to the discovery that there ismore to theworld than just the spacetimemanifold
and its denizens.

We’ll remain officially neutral on the choice between the inflationary and defla-
tionary options here. What we want to stress here is that a concern for absolute
representation is not as far removed from hands-on philosophy of physics as it might
at first seem. The search for absolute representations has led directly to a novel for-
malism (geometric objects on the bundle of frames) and a novel metaphysics (realism
about the bundle of frames). Even if one is not moved by Moore’s case for absolute
representation, then, it is a helpful tool in the context of discovery. If one is so moved,
on the other hand, the possibility of absolute representation plays a role in the context
of justification too. It can move physics forward either way.

8 Conclusion

Let’s sum up. Moore (1997) has given an abstract and a priori argument to the effect
that an absolute representation of reality is possible: that is, that it is possible to
represent the world ‘from no point of view’. He has also stated that it is the business of
physics to find such an absolute representation. But this seems to stand in conflict with
modern physics, in which various non-geometric objects—such as the gravitational
stress-energy pseudotensor—at least prima facie seem to have physical content. One
way to resolve the tension is in fact to denude all such objects of representational
significance. In this article, however, we have sought to explore how one may instead
secure an absolute representation ofwhatever it is that said objects purport to represent:
again, our case study has been gravitational energy, in which case we have appealed
to geometric objects defined on the bundle of linear frames. Since such objects are
geometric, they do admit of absolute representations—thereby, any tension between
Moore’s argument and modern physics (at least in this particular case!) is resolved.

Clearly, what we have presented here is but one example of a potentially much
broader methodology, which it would be worth exploring in the context of other non-
geometric objects inmodern physics that onewould like to invest with representational
import. The most significant such case is that of spinors, which are taken to represent
all fermionic matter in the universe. Since spinors are non-geometric objects, it again
appears that they stand in tension withMoore’s argument: insofar as one seeks a repre-
sentation of physics ‘from no point of view’, it becomes a pressing task to investigate
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how this might be secured in this case also. Although Pitts (2012) has undertaken
some admirable and beautiful work in this direction, as of yet he has shown only that
such objects are ‘almost geometric’ (in a technical sense); given this, in our view, there
remains more work to be done when exploring how well (or otherwise) spinors and
other non-geometric objects sit with Moore’s argument.

The general point—which was also raised in Read (2022)—is this: contemporary
physics presents a broad zoology of ‘fantastic beasts’ (Duerr, 2019a); it is incumbent
upon the metaphysician to investigate the metaphysical significance of such objects,
as well as how such objects sit with any a priori arguments regarding the world which
they might elect to muster. Our investigations in this article into how well Moore’s
argument sits with non-geometric objects from physics can, in this sense, be taken
as a call-to-arms to all naturalistically-inclined metaphysicians and philosophers to
engage in a substantially broader research programme.
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